

Chapter1 Introduction and definition of terms

What determines how matter behaves? ⇔ Thermodynamics.

1. What determines how matter behaves?

Final Stable State ⇔ Equilibrium State

Gibbs free energy: Minimum (at specific T, P)

 $2. \begin{cases} \text{Classical thermodynamics} \Rightarrow \text{Macroscopic phenomena.} \\ \text{Statistical thermodynamics} \Rightarrow \text{Microscopic description} \end{cases}$

Particles: atoms, electrons, molecules.

Quantum mechanics

Probability (distribution function)

3. Thermodynamics V.S. Kinetics

Thermodynamics: $\begin{cases} Energy \\ Equilibrium \ state \end{cases}$ Kinetics: $\begin{cases} \text{Reaction rate} \\ \text{Metastable state} \end{cases}$

- 4. Thermodynamic systems of materials
 - ① material system:
 - Unary or/ multi-component (binary, ternary, quaternary)
 - Homogeneous/ Heterogeneous
 - Closed/ Open
 - Non-reacting/ Reacting
 - Simple/ Complex

Simple system: energy changes due to mechanical, thermal,

and chemical variation.

Complex system: energy changes due to gravitational, electrical, magnetic and surface effects.

5. Thermodynamic Variables

State functions or process variables

Intensive or extensive variables

- State function: a quantity that depends on the condition of the system and not on how the system arrived at that condition.
 - ⇒ State function is independent of path.

$$\Rightarrow \Delta Z = Z_{final} - Z_{initial} = \int_{Z_i}^{Z_f} dZ$$

- \Rightarrow For a very complex process, $\triangle Z$ can be computed by the simplest path connecting the initial and the final states.
- ⇒ State function can be expressed by exact differential, dZ.
- Process variable: a quantity that only has meaning for a changing system and its value for a process depends explicitly on the path.

e.g.
$$\begin{cases} Work, & W(\Delta W), & \delta W \\ Heat, & Q(\Delta Q), & \delta Q \end{cases}$$

$$\delta W = \overrightarrow{F} \cdot d\overrightarrow{x}$$

$$W = \int_{path} \overrightarrow{F} \cdot d\overrightarrow{x} \qquad \left(\int \text{ or } \oint \right)$$

$$1. \oint dZ = 0, \text{ but } \oint \delta W \neq 0$$

$$\begin{cases} Pr \ essure : P(+PdV) \\ Stress : \sigma(+\sigma d\varepsilon) \\ Electric : \varepsilon(+\varepsilon dq) \\ Magnetic : H(+HdM) \\ Surface \ tension : \gamma(+\gamma dA) \end{cases}$$

• "Intensive" property may be defined to have a value at a point in the system. It does not depend on the size of the system.

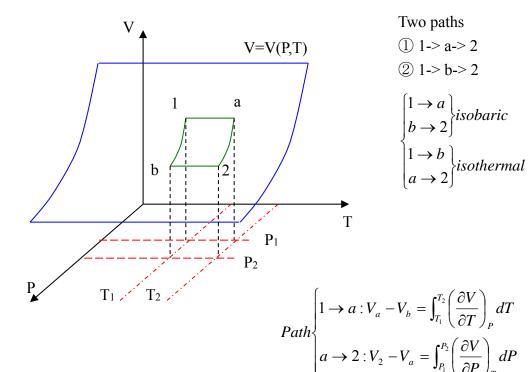
e.g. P, T,
$$X_k$$
, ρ (density), \overline{V} , \overline{S} , \overline{U} , \overline{H} , \overline{A} , \overline{G}

• "Extensive" property depends on the size of the system e.g. V, S, U, H, A, G, n_k

6. Concept of state

- * Microscopic state: statistical distribution of all constituent particles. Macroscopic state: phenomenological property of a system.
- * Thermodynamic state of the simple unary system is uniquely fixed when teh values of two independent variables are fixed.
- * Any two properties could be chosen as the independent variables. P, T are the most amenable to control.
- * Consider a pure gas V = V(P,T). Equation of state? If Eq. of state is known, we can calculate $\triangle V$.

$$(P_1, T_1) \rightarrow (P_2, T_2), \quad \triangle V = (V_2 - V_1) = ?$$



$$\therefore \Delta V = V_2 - V_1 = \int_{T_1}^{T_2} \left(\frac{\partial V}{\partial T} \right)_P dT + \int_{P_1}^{P_2} \left(\frac{\partial V}{\partial P} \right)_T dP$$

$$Path \begin{cases} 1 \to b, & V_b - V_1 = \int_{P_1}^{P_2} \left(\frac{\partial V}{\partial P}\right)_T dP \\ b \to 2, & V_2 - V_b = \int_{T_1}^{T_2} \left(\frac{\partial V}{\partial T}\right)_p dT \end{cases}$$

$$\therefore \Delta V' = V_2 - V_1 = \int_{P_1}^{P_2} \left(\frac{\partial V}{\partial P} \right)_T dP + \int_{T_1}^{T_2} \left(\frac{\partial V}{\partial T} \right)_P dT$$

 $\Delta V = \Delta V'$ ΔV is indep. of path.

V is state function, dV is exact differential.

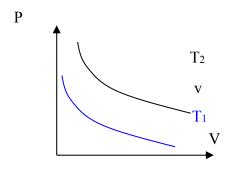
$$V = V(T, P)$$
 $dV = \left(\frac{\partial V}{\partial T}\right)_P dT + \left(\frac{\partial V}{\partial P}\right)_T dP$

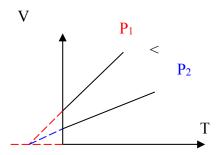
For any values of T_1 , P_1 , the gas system is at equilibrium only when it has that unique volume, V_1 , which corresponds to T_1 and P_1 .

7. Equation of state of an ideal gas

Boyle's law: constant T, $P \propto \frac{1}{V}$

Charles's law: constant P, $V \propto T$





∴ at T (
$$P_o \to P$$
) Boyle's law: $P_o V(T, P_o) = PV(T, P)$
at P (T → T) Charles's law: $V(P_o, T_o) = V(P_o, T)$

at
$$P_o(T_o \to T)$$
 Charles's law: $\frac{V(P_o, T_o)}{T_o} = \frac{V(P_o, T)}{T}$

Take :
$$\begin{cases} T_o = 0^o C = 273.15K \\ P_o = 1 \text{ atm} \end{cases}$$

$$\therefore P_o \cdot \frac{T \cdot V(P_o, T_o)}{T_o} = P \cdot V(T, P)$$

$$\therefore \frac{\text{PV}}{\text{T}} = \frac{P_o V_o}{T_o} = Cons \tan t.$$

Avogadro's hypothesis : Volume per "g - mole" of all "ideal gas" at 0° C, P = 1 atm is 22.414 l.

$$\therefore gas \text{ constant} = R = \frac{1 \text{ atm} \times 22.414 l}{mole \times 273.15 K} = 0.082057 \frac{atm \cdot l}{K \cdot mole}$$

: Ideal gas law (equation of state of ideal gas):

For one mole gas: PV = RT

For n mole gas : PV' = nRT

molar volume :
$$V = \frac{V'}{n}$$

Note: (1)
$$1 \text{ atm} = 101325 \frac{\text{N}}{\text{m}^2} = 101325 Pa = 1013.25 hPa$$

$$\therefore$$
 1 atm · liter = 101.325 J

$$R = 0.082057 \frac{\text{atm} \cdot \text{liter}}{\text{K} \cdot \text{mole}} = 8.314 \frac{J}{K \cdot mole}$$

(2) Absolute temperature scale (Kelvin)

1 atm,
$$H_2O$$
 lice point: $0^{\circ}C$, $32^{\circ}F$
boil point: $100^{\circ}C$, $212^{\circ}F$

1802 Luis & Lussac: Thermal expansion coefficient of "permanent gas" is a constant.

Thermal expansion coefficient :
$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$$

Take
$$V = V_o$$
 at $0^{\circ} C$

$$\therefore \alpha = \frac{1}{273.15}$$
 for all gas when P \rightarrow 0

hypothetical gas: ideal gas

:. When $T = -273.15^{\circ} C$, mole volume of gas is zero,

⇒ low temperature limit

$$T \equiv 0K = -273.15^{\circ}C$$

$$T(K) \equiv T(^{\circ}C) + 273.15$$

Charles's law:

